Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations (Wenxiong Li; Tsinghua University)

From November 19, 2018 13:15 until November 19, 2018 13:45

At Instituto de Astrofísica, Pontificia Universidad Católica, Vicuña Mackenna 4860, Santiago, Chile

Categories: Seminarios

Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing to place interesting constraints on its progenitor system (Dimitriadis et al. 2018; Shappee et al. 2018b). Here, we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3±0.3 days and dm15 (B) = 0.96±0.03 mag, but it seems to have bluer B - V colors. We construct the “uvoir” bolometric light curve having peak luminosity as 1.49x10^43 erg/s , from which we derive a nickel mass as 0.55±0.04Msun by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a non-degenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia, but is characterized by prominent and persistent carbon absorption features. The C II features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in a SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers.