Planet signatures in transition disks (Wladimir Lyra; California State University & NASA/JPL)

From January 04, 2017 13:15 until January 04, 2017 13:45

At Instituto de Astrofísica, Pontificia Universidad Católica, Vicuña Mackenna 4860, Santiago, Chile

Categories: Seminarios

High angular resolution imaging of the outer regions of transitional disks have recently become available, showing a plethora of puzzling asymmetries that beg for explanation. The presence of planets is a particularly attractive interpretation for explaining these asymmetries, since they generally match the range of structures predicted by hydrodynamical models of planet-disk interactions. In this talk I will focus on two of these structures, spiral arms and non-axisymmetric dust clouds, that have been seen in images obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and with the Atacama Large Millimeter Array (ALMA). Giant horseshoe-shaped dust distributions have been tentatively explained as dust trapping in giant vortices, akin to Jupiter's Great Red Spot, excited via Kelvin-Helmholtz instability in the gaps walls carved by planets. For spiral arms, however, comparing the predictions of planet-disk interaction models to the observed features has shown far from perfect agreement. This may be due to the strong approximations used for the predictions. For example, spiral arm fitting typically uses results that are based on low-mass planets in an isothermal gas. The spirals that form in disks heated by these effects are less tightly wound, better fitting the spiral strutures observed in transition disks. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks.